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ABSTMCT 

The s t r i p p i n g  of  CQ2 and NH3 from chemical ly  r e a c t i v e  d i l u t e  
aqueous s o l u t i o n  i n  a packed column i s  modeled u s i n g  a s e c t i o n - t o -  
s e c t i o n  c a l c u l a t i o n  procedure.  Equi l ibr ium chemical r e a c t i o n  i s  
accounted f o r  by c o r r e c t i n g  t h e  l i q u i d  f i l m  mass t r a n s f e r  c o e f f i -  
c i e n t  through enhancement f a c t o r s  f o r  t h e  t r a n s f e r r i n g  s p e c i e s .  
Comparison wi th  p i l o t  scale s t r i p p i n g  experiments  shows t h a t  the  
packed h e i g h t  r e q u i r e d  f o r  a g i v e n  s e p a r a t i o n  can b e  p r e d i c t e d  t o  
w i t h i n  1% on average.  

INTRODUCTION 

Gas a b s o r p t i o n  both  w i t h  and wi thout  chemical r e a c t i o n  h a s  

been the s u b j e c t  o f  i n t e n s i v e  s tudy  f o r  many decades and,  a l though 

l i t t l e  work has  appeared d e a l i n g  w i t h  a p p l i c a t i o n  t o  t h e  des ign  

and a n a l y s i s  of  commercial equipment, e s p e c i a l l y  packed towers ,  

i t  can now b e  claimed t h a t  the theory  a t  l eas t  i s  w e l l  under- 

s t o o d  (1,Z). The r e v e r s e  s t e p  o f  removing absorbed gases  from 

s o l u t i o n s  w i t h  which they react i s  i n  s h a r p  c o n t r a s t  by remaining 

v i r t u a l l y  unexplored e i ther  t h e o r e t i c a l l y  o r  e x p e r i m e n t a l l y .  
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1340 WEILAND AND LITSTER 

This i s  a p a r t i c u l a r i t y  amazing s i t u a t i o n  i n  view of t h e  f a c t  t h a t  

the  n a t u r a l  s e q u e l  t o  a b s o r p t i o n  i n  any gas p u r i f i c a t i o n  o r  

recovery process  i s  s t r i p p i n g ,  a h i g h l y  energy i n t e n s i v e  o p e r a t i o n  

r e q u i r i n g  l a r g e  q u a n t i t i e s  of  steam. 

The most p r e v a l e n t  c a s e  of  d e s o r p t i o n  i n  which t h e  t r a n s -  

f e r r i n g  s p e c i e s  are s t r i p p e d  p u r e l y  by t h e  a c t i o n  o f  h e a t  has  been 

addressed r e c e n t l y  by Astarita and coworkers ( 3 , 4 , 5 )  us ing  t h e  

f i l m  model. The key resul t  of  t h e i r  s t u d i e s  i s  t h e  d e l i n e a t i o n  of  

the c o n d i t i o n s  under which chemical a b s o r p t i o n  theory can be  

a p p l i e d  t o  d e s o r p t i o n .  More r e c e n t l y ,  t h i s  a n a l y s i s  h a s  been 

a p p l i e d  to t h e  des ign  from f i r s t  p r i n c i p l e s ,  o f  cont inuous con- 

t ' ic t ing equipment f o r  C02 removal from s p e n t  alkanolamine sol u- 

t i o n s  ( 6 )  and model p r e d i c t i o n s  were s u c c e s s f u l l y  t e s t e d  a g a i n s t  

e x t e n s i v e  d a t a  taken on a semi-commercial scale column ( 7 ) .  A l l  

o f  t h i s  work, however, d e a l s  w i t h  t h e  t r a n s f e r  of  a s i n g l e  reac-  

t i v e  s p e c i e s .  I n  t h e  c u r r e n t  work w e  a t tempt  t o  d e a l  w i t h  t h e  

simul taneous d e s o r p t i o n  of  carbon d i o x i d e  and ammonia from aqueous 

s o l u t i o n  where they are p r e s e n t  l a r g e l y  i n  t h e  form of  ammonium 

c,-lrbamate which decomposes under h e a t i n g .  This  s tudy  was m o t i -  

v a t e d  by the need t o  recover  ammonia and carbon d i o x i d e  from a 

waste  water stream c o n t a i n i n g  up t o  t h r e e  p e r c e n t  o f  each of t h e s e  

components, emanating from a urea  p l a n t .  

PROCESS MODEL 

Our a n a l y s i s  o f  t h e  s t r i p p i n g  process  w i l l  b e  based on the  

f i l m  model of Whitman (8) .  Although i t  is  g e n e r a l l y  agreed t h a t  

t h i s  model i s  n o t  very  r e a l i s t i c ,  i t  i s  a matter of  exper ience  

t h a t  p r e d i c t i o n s  based on i t  are u s u a l l y  very  s imi l a r  t o  those 

based on t h e  p h y s i c a l l y  m o r e  s a t i s f y i n g  p e n e t r a t i o n  t h e o r i e s ,  and 

indeed ,  a r e  i d e n t i c a l  when a l l  d i f f u s i v i t i e s  a r e  e q u a l .  It is  

common p r a c t i c e  i n  chemical a b s o r p t i o n  theory  t o  account  f o r  t h e  

e f f e c t  of l i q u i d  phase chemical r e a c t i o n  through an enhancement 

f a c t o r  a .  This i s  the  r a t i o  of  a b s o r p t i o n  rates w i t h  and w i t h o u t  

chemical r e a c t i o n  when r e s i s t a n c e  t o  mass t r a n s f e r  resides s o l e l y  
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RECOVERY OF NH3 AND C02 1341 

w i t h i n  t h e  l i q u i d  phase.  Then the  molar f l u  of  t h e  i - t h  

component i s  

Ri = $i k:,i (xi - x i )  ; i = 1 , 2  (1) 

i n  which t h e  a s t e r i s k  r e f e r s  t o  the  mole f r a c t i o n  a t  the  i n t e r -  

face ;  i n  t h e  absence of gas phase r e s i s t a n c e ,  t h i s  would b e  d e t e r -  

mined d i r e c t l y  through an e q u i l i b r i u m  r e l a t i o n  such as Henry’s 

l a w .  I f  t h e  gas s i d e  o f f e r s  s i g n i f i c a n t  r e s i s t a n c e ,  then  t h e  

molar f l u x  i s  a l s o  given by 
* 

Ri = ky,i (yi - yi) ; i = 1 , 2  (2)  

Thus, provided ko k +J, bulk  phase concent ra t ions  and 

e q u i l i b r i u m  r e l a t i o n s  ( i . e .  , s o l u b i l i t i e s )  a r e  known, Eqs. (1) and 

(2)  can b e  so lved  i t e r a t i v e l y  f o r  t h e  i n t e r f a c i a l  concent ra t ions  

xi and y The n e t  r e s u l t  would be a 

point value  f o r  t h e  desorp t ion  f l u x  which could be used i n  a 

s e q u e n t i a l  c a l c u l a t i o n  from p o i n t  t o  p o i n t  a long t h e  h e i g h t  of a 

packed column. It  should be noted t h a t  the  mole f r a c t i o n s  x 

r e f e r  t o  t h e  p h y s i c a l l y  d i s s o l v e d  b u t  zuzreacted t r a n s f e r r i n g  

s p e c i e s ,  and t h a t  an i n t e r a t i v e  procedure would be r e q u i r e d  

because the  enhancement f a c t o r s  $i themselves depend on i n t e r -  

f a c i a l  c o n c e n t r a t i o n s  i n  a n o n l i n e a r  way. The i m p l i c a t i o n  is t h a t  

the thermodynamics of t h e  e q u i l i b r i u m  chemical r e a c t i o n  must be 

known and t h i s  w i l l  cons iderably  complicate  the  c a l c u l a t i o n s .  

x , i ’  y , i ’  

* * 
hence the molar f l u x e s  Ri. i’ 

i 

As o u t l i n e d  by Astarita and Savage ( 3 ) ,  t h e  v a l i d i t y  of such 

a model i s  s u b j e c t  t o  the  fol lowing condi t ions  be ing  met: ( i )  mass 

t r a n s f e r  lies w i t h i n  o r  between t h e  d i f f u s i o n a l  and f a s t  r e a c t i o n  

regimes, ( i i )  t h e r e  i s  only a s i n g l e  o v e r a l l  r e a c t i o n ,  ( i i i )  the  

t o t a l  c a p a c i t y  of  t h e  l i q u i d  f o r  d i s s o l v e d  gas g r e a t l y  exceeds i t s  

pure ly  p h y s i c a l  (e .g . ,  Henry’s law) c a p a c i t y ,  and ( i v )  t h e  gas 

phase composition i s  l i n e a r l y  r e l a t e d  t o  the concent ra t ion  of 

d i sso lved  b u t  unreacted gas. These condi t ions  are c e r t a i n l y  m e t  

i n  t h e  C02-NH3-H20 s y s  t e m ,  e s p e c i a l l y  a t  t h e  e l e v a t e d  temperatures  

used i n  s t r i p p i n g .  
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1342 WEILAND AND LITSTER 

Mass and Energy Balances 
_____^____ 

We cons ider  d i v i d i n g  t h e  column i n t o  a number of  s h o r t  

s e c t i o n s  of  h e i g h t  Az; a t y p i c a l  one i s  shown i n  F ig .  1. C a l -  

c u l a t i o n s  might s tar t  from the  top o f  t h e  column where t h e  l i q u i d  

r a t e  and composi t ion e n t e r i n g  and t h e  vapor  ra te  and composition 

l e a v i n g  a r e  known from process  s p e c i f i c a t i o n s  o r  e s t i m a t e d  from 

o v e r a l l  m a s s  b a l a n c e s .  I t  is  e v i d e n t  t h a t  on e n t e r i n g  t h e  j - th  

s e c t i o n  a l l  c o n d i t i o n s  a t  t h e  top  of t h a t  s e c t i o n  a r e  known. 

I d e a l l y ,  t r a n s f e r  r a t e s  should be based on average flows and com- 

p o s i t i o n s  w i t h i n  t h e  s e c t i o n  and w e  are l e d  t o  t h e  fo l lowing  

equat ions  : 

- - - -;t -0 
(3)  

( 4 )  

N .  . = @ i , j  kxi , j  a (x i  

Ni , j  y l , j  

- x. .) Az ; i-1,2 
1, J , j  1 , ~  

- - - -* 
= k . a(Yi , j  - Y ~ , ~  ) Az ; i = 1 , 2  

with the  s o l u b i l i t y  r e l a t i o n s  
A * 

= H. x ; i = 1 , 2  ( 4  ) ' i , j  i,j i , j  

In g e n e r a l ,  Henry's l a w  c o n s t a n t  H would depend n o t  only on the  

p a r t i c u l a r  s p e c i e s  involved  b u t  a l s o  on t h e  c o n c e n t r a t i o n s  o f  
i , j  

G A S  P H A S E  
I 
I -  
I -  
I 

D ESOR B I  N G 
NH3 & C 0 2  r 

I - I CONDENSING 
LlOUlD PHASE - I S T E A M  

PIGUM? 1. Flows and composi t ions around t h e  j - t h  s e c t i o n  of  

he ight  Az. 
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RECOVERY OF NH3 AND C 0 2  1343 

o t h e r  s p e c i e s  through s a l t i n g - i n  and s a l t i n g - o u t  e f f e c t s .  

Because the  l i q u i d  is everywhere a t  i t s  b o i l i n g  p o i n t ,  any 

s e c t i o n  always o p e r a t e s  i s o t h e r m a l l y ;  y e t ,  t h e  decomposition of 

ammonium carbamate is  h i g h l y  endothermic. I t  i s  e v i d e n t  t h a t  t h i s  

h e a t  requirement can be m e t  on ly  by condensing p a r t  of t h e  vapor 

phase,  s p e c i f i c a l l y ,  p a r t  of i t s  steam content .  Thus, i n  a d d i t i o n  

to  carbon d ioxide  and ammonia t r a n s f e r r i n g  t o  t h e  vapor phase,  

steam condenses a t  t h e  i n t e r f a c e  and d i l u t e s  t h e  l i q u i d .  The 

d i f f u s i v e  f l u x e s  i n t o  and o u t  of  t h e  l i q u i d  phase are n e a r l y  equi -  

molar s o  t h a t  d i f f u s i v e  i n t e r a c t i o n  e f f e c t s  can s a f e l y  b e  ignored .  

I n  any case, b a s i c  d a t a  such as  t r a n s f e r  c o e f f i c i e n t s  a r e  n o t  very 

a c c u r a t e l y  known and i n c l u s i o n  o f  i n t e r a c t i v e  e f f e c t s  would be an 

unnecessary embellishment. 

Physicochemical parameters  such as enhancement f a c t o r s ,  mass 

t r a n s f e r  f i l m  c o e f f i c i e n t s  and i n t e r f a c i a l  area are flow and 

composition dependent s o  the  c a l c u l a t i o n s  w i t h i n  a s e c t i o n  must b e  

i t e r a t i v e .  

i n  a p o s i t i o n  t o  c a l c u l a t e  the  steam condensat ion ra te  s 
entha lpy  ba lance  

Having es t imated  the  d e s o r p t i o n  rates Zi, we are now 

from an  
j 

Overa l l  mass ba lances  on t h e  l i q u i d  and vapor phases lead  t o  t h e  

fol lowing equat ions  f o r  l i q u i d  and vapor flows a t  t h e  bottom of  

the  s e c t i o n :  

L. = Lj-l + Tj - c Ni 
J , j  

and s p e c i e s  ba lances  l e a d  to  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1344 WEILAND AND LITSTER 

A f i r s t  e s t i m a t e  o f  the d e s o r p t i o n  rates k can be obta ined  
i , j  

by assuming a l l  flows and composi t ions t o  be c o n s t a n t  w i t h i n  t h e  

s e c t i o n  and e q u a l  t o  t h e i r  v a l u e s  a t  t h e  top .  The s o l u t i o n  t o  

E q s .  (3) t o  (5) i s  then used i n  Eqs. (6) t o  (10) t o  o b t a i n  f i r s t  

estimates o f  bottom c o n d i t i o n s .  

found, the  remaining e q u a t i o n s  can b e  s o l v e d  s e q u e n t i a l l y .  F u r t h e r  

i t e r a t e s  a r e  based on t h e  averages 

Note t h a t  once t h e  yi have been 
,.i 

and similar q u a n t i t i e s  f o r  t h e  mole f r a c t i o n s .  I f  coarse  s e c t i o n -  

i n g  i s  used then i t  is  probably b e t t e r  t o  use l o g a r i t h m i c  mean 

mole f r a c t i o n s  b u t  f o r  r e l a t i v e l y  s h o r t  s e c t i o n s ,  a r i t h m e t i c  means 

are adequate .  C a l c u l a t i o n s  proceed from s e c t i o n  t o  s e c t i o n  u n t i l  

c o n d i t i o n s  a t  t h e  bottom o f  t h e  column are reached.  F i n a l l y ,  one 

might r e p e a t  t h e  e n t i r e  procedure over  t h e  whole column us ing  a 

l a r g e r  number o f  s h o r t e r  s e c t i o n s  t o  e n s u r e  t h a t  accuracy h a s  n o t  

been s a c r i f i c e d  by p a r t i t i o n i n g  t h a t  i s  too  coarse .  

It  should be noted t h a t  d i f f u s i v e  i n t e r a c t i o n  between trans- 

f e r r i n g  s p e c i e s  h a s  been ignored;  t h e  only coupl ing  i s  provided 

through t h e  l i q u i d  phase chemical r e a c t i o n  and w e  have avoided a 

d e s c r i p t i o n  of  t h e  process  i n  t e r m s  o f  a f i l m  model s o l u t i o n  o f  

the  Maxwell-Stefan e q u a t i o n s  f o r  example. I n  view o f  t h e  l a r g e  

u n c e r t a i n t y  i n  most of  t h e  physicochemical d a t a  necessary  t o  t h e s e  

c a l c u l a t i o n s ,  a n  i n t e r a c t i v e  mu1 ticomponent d e s c r i p t i o n  would be  

needless ly  s o p h i s t i c a t e d .  

K i n e t i c s ,  Enhancement Fac tors  and Equi l ibr ium 

Although t h e r e  a r e  a number o f  chemical s p e c i e s  p r e s e n t  i n  

s o l u t i o n ,  i n c l u d i n g  carbonate  and b i c a r b o n a t e  i o n ,  t h e  predominant 

s p e c i e s  may be cons idered  t o  be  i n  t h e  form o f  d i s s o l v e d  C02 and 

NH and t h e  r e a c t i o n  product  ammonium carbamate. The o v e r a l l  

r e a c t i o n  i s  (9 )  
3 
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The rate c o n t r o l l i n g  s t e p ,  however, i s  (10) 

NK3 (aq) + C02 (aq)  = NH2COOH (13 1 

so t h a t  t h e  chemical k i n e t i c s  are second o r d e r .  Never the less ,  

e q u i l i b r i u m  i s  governed by r e a c t i o n  (13) .  

Enhancement f a c t o r s  f o r  carbon d ioxide  and a m n i a  have been 

der ived  by Rod and Rylek (10) based on t h e  f i l m  model and t h e  

assumption t h a t  chemical e q u i l i b r i u m  p r e v a i l s  everywhere i n  the  

l i q u i d  phase, i n c l u d i n g  the  l i q u i d  f i l m .  The enhancement f a c t o r  

f o r  C 0 2  w a s  found t o  b e  

Ha  
'C02 = tanh(Ha) 

where H a  is the  Hatta number 

I 
* 

H a  = (k C R W3 DC02 

and t h e  corresponding express ion  f o r  ammonia i s  

where t h e  a s t e r i s k  a g a i n  r e f e r s  to  t h e  gas- l iqu id  i n t e r f a c e  and 

t h e s e  concent ra t ions  must be c a l c u l a t e d  from chemical r e a c t i o n  

e q u i l i b r i u m  and phys ica l  s o l u b i l i t y  d a t a .  

Equi l ibr ium d a t a  f o r  t h e  CO -MI -H 0 system a t  t h e  e l e v a t e d  2 3 2  
temperatures  common i n  s t r i p p i n g  are a v a i l a b l e  (11) i n  t h e  form o f  

a series of  p l o t s  of t h e  e q u i l i b r i u m  p a r t i a l  p r e s s u r e s  of carbon 

d ioxide  and a m n i a  a g a i n s t  the  f r a c t i o n a l  s a t u r a t i o n  of t h e  l i q u i d  

phase (carbonat ion  r a t i o ,  equa l  t o  t o t a l  moles CO per  mole 

both s p e c i e s  i n  a l l  forms) wi th  t o t a l  ammonia concent ra t ion  and 

temperature  as parameters .  In the  m a s s  t r a n s f e r  c a l c u l a t i o n s ,  t h e  

bulk  l iquid-phase carbonat ion  r a t i o  and a m n i a  concent ra t ion  a r e  

known; hence, chemical e q u i l i b r i u m  d a t a  are used t o  determine t h e  

gas-phase p a r t i a l  p r e s s u r e s  which would b e  i n  e q u i l i b r i u m  wi th  the  

3' 2 
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1746 WEILAND AND LITSTER 

bi11.k 1i.quid. 'Ken Henry's l a w  f o r  the  s p e c i e s  involved  provides  a 

r o u t e  track t o  the l i q u i d  phase and g i v e s  t h e  c o n c e n t r a t i o n s  of the  

piiysica Lly d i s s o l v e d  b u t  unreac ted  s p e c i e s .  The same c a l c u l a t i o n s  

m i l s t  be done oE course f o r  t h e  i n t e r f a c i a l  c o n c e n t r a t i o n s ,  b u t  n o w  

tiiese are  t i e d  t o  the  mass t r a n s f e r  rates through E q s .  (3) and ( 4 )  

which makes t h e  whole procedure i t e r a t i v e .  

Equi l ibr ium d a t a  i n  t h e  above form are not  very  s u i t a b l e  f o r  

d i r e c t  ose i n  these  computat ions - t h e r e  are t h r e e  independent  

v;iriabl.es and c e r t a i n l y  one would expec t  temperature  dependence t o  

be e x p r e s s i b l e  i n  t h e  form A exp (AH/RT). Unfor tuna te ly ,  d a t a  a r e  

u s u a l l y  obta ined  by v a r y i n g  t h e  carbonat ion  r a t i o  w h i l e  ho ld ing  

temperature  f i x e d  r a t h e r  than v ice-versa .  Therefore ,  t h e  procedure 

adop tetl was t o  pass  t h e  b e s t  leas t -squares  polynomials through t:he 

d a t a  a s  r e p o r t e d ,  and then b u i l d  up c r o s s - p l o t s  of  s o l u t e  p a r t i a l  

pressure versus  1 / T  wi th  carbonat ion  r a t i o  as parameter ,  which 

could be cor re l? ted  as s t r a i g h t  l i n e s .  

c a l c u l a t i o n s  t O  two-parameter i n t e r p o l a t i o n .  

This  reduced e q u i l i b r i u m  

Physic o chemical Data ___- 

C o r r e l a t i o n s  f o r  i n d i v i d u a l  f i l m  c o e f f i c i e n t s  f o r  mass 

t rrinsfer have been presented  elsewhere ( 1 2 )  f o r  v a r i o u s  packing 

s i z e s  and types .  For %-in. Raschig r i n g s  ( t h e  packing used i n  t h e  

experiinen t s )  

(1.7) 
k a = 145 (L/uL) 0.89 ( u L / p L  D L l o s 5  DL 
X 

whi le  the gas-s ide c o e f f i c i e n t  f o r  ammonia is c o r r e l a t e d  by (12)  

The Sciimidt number i s  t h e  parameter  commonly used t o  e s t i m a t e  gas- 

f i l m  c o e f f i c i e n t s  f o r  o t h e r  gases  from d a t a  on ammonia. 

The h e a t  of  t h e  o v e r a l l  r e a c t i o n  f o r  carbamate formation from 

r e a c t a n t s  i n  t h e  d i s s o l v e d  s t a t e  i s  repor ted  (13) t o  be  -13.1 

k c n l / g m o l  a t  i n f i n i t e  d i l u t i o n .  S ince  o u r  i n t e r e s t  i s  i n  recovery 

from d i l u t e  s o l u t i o n ,  no c o r r e c t i o n  f o r  c o n c e n t r a t i o n  e f f e c t s  w a s  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



RECOVERY OF NH3 AND C 0 2  1347 

made. The h e a t  of d e s o r p t i o n  of  ammonia from water i s  0.617 times 

t h e  l a t e n t  h e a t  of v a p o r i z a t i o n  of water  (14) and Danckwerts (2) 

r e p o r t s  4.76 kcal/gmol as t h e  h e a t  of  s o l u t i o n  of  C02 i n t o  water. 

appears  i n  Eqs. (15) and (16) f o r  t h e  enhancement f a c t o r  f o r  CO 

The fo l lowing  temperature  dependence h a s  been found by Andrews (15): 

The ra te  c o n s t a n t  kR f o r  t h e  forward r e a c t i o n  i n  Eq. (14) 

2‘ 

loglo kR = 14.23 - 2550/T (19) 

with  k i n  t h e  u n i t s  (cm’/gml s )  and T i n  K .  R 
F i n a l l y ,  o t h e r  fundamental d a t a  i n c l u d i n g  d i f f u s i o n  

c o e f f i c i e n t s ,  s o l v e n t  v i s c o s i t y ,  dew p o i n t s  and Henry’s l a w  

c o n s t a n t s  have been taken  from R a w a l  (16) and Per ry  (17 )  as 

c o r r e l a t i o n s  f o r  temperature  dependence. 

EXPERIMENTAL 

A l a y o u t  of t h e  p i l o t  p l a n t  used f o r  exper imenta l  measure- 

ments of  s t r i p p i n g  rates is shown i n  s i m p l i f i e d  schematic  form i n  

Fig.  2 .  Only major equipment i t e m s  and process  streams are 

i n d i c a t e d ;  v a l v i n g  arrangements ,  ins t ruments  f o r  t h e  measurement 

o f  f low rate, temperature  and p r e s s u r e ,  c o o l i n g  water  l i n e s  and 

steam l i n e s  have been omi t ted .  However, a d e t a i l e d  d e s c r i p t i o n  

may be  found elsewhere (16) .  

A metered f low o f  carbonated ammonia s o l u t i o n  w a s  passed v i a  
2 

a gear  pump t o  a s team h e a t e d  U-tube exchanger H of  0.5 m area 

where i t  w a s  p rehea ted  t o  t h e  b o i l i n g  p o i n t  a t  t h e  p r e v a i l i n g  

s t r i p p e r  p r e s s u r e .  The b o i l i n g ,  r i c h  l i q u o r  e n t e r e d  t h e  t o p  of  

t h e  s t r i p p i n g  column S and w a s  d i s t r i b u t e d  over  t h e  packing 

through a f ive- legged s p i d e r  arrangement. The s t r i p p e r  w a s  15 .2  

cm (6-in.) i n  d i a m e t e r  packed t o  a h e i g h t  of 1.64 m w i t h  12.7 mm 

(% - i n . )  Raschig r i n g s  of  w a l l  t h i c k n e s s  approximately 3 mm. Thus, 

t h e  column t o  packing diameter  r a t i o  was 1 2 .  Vapor w a s  provided 

by a 1 m v e r t i c a l  thermsyphon r e b o i l e r  o p e r a t i n g  a t  h igh  

r e c i r c u l a t i o n  and i t s  flow w a s  c o n t r o l l e d  by t h e  steam p r e s s u r e  on 

t h e  s h e l l  s i d e  of t h e  r e b o i l e r .  Bottoms from t h e  column j o i n e d  

the r e c i r c u l a t i o n  loop and p a r t  of  t h e  t o t a l  flow w a s  drawn o f f  a t  

2 
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1348 WEILAND AND LITSTER 

1 

FIGURE 2 .  Schematic  o f  p i l o t  p l a n t .  

a measured r a t e  so as t o  m a i n t a i n  c o n s t a n t  l i q u i d  l e v e l  a t  t h e  
2 b , s e  o E  t h e  column. This l e a n  l i q u o r  w a s  coo led  i n  the 0.5 m 

C-tube exchanger  C b e f o r e  b e i n g  sewered.  

Vapor, composed of  steam, carbon d i o x i d e  and ammonia w a s  

r e l e a s c d  from t h e  column through a n  a i r - t o - c l o s e  pneumat i ca l ly  

a c t u a t e d  v a l v e  which c o n t r o l l e d  t h e  s t r i p p e r  p r e s s u r e ;  i t  passed  

a t  subqs tan t i a l ly  a tmosphe r i c  p r e s s u r e  v i a  an o r i f i c e  meter t o  t h e  

base of  t h e  condense r - r eabso rbe r  A. There t h e  vapor  m e t  a 

c o u n t e r c u r r e n t  f l ow of  co ld  water which condensed t h e  steam and 

comple t e ly  r e a b s o r b e d  t h e  ca rbon  d i o x i d e  and ammonia. "his 

5tremi w i s  a l s o  s e w e r e d .  N o  p a r t i c u l a r  c a r e  was t aken  i n  pack ing  

t h e  r e a b s o r b e r  and i t  c o n t a i n e d  a v a r i e t y  o f  pack ing  t y p e s  and 

s ~ z e s ;  i ts  s o l e  pu rpose  w a s  t o  p r e v e n t  release of  t h e  s t r i p p e d  

gases to atmosphere.  
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RECOVERY OF NH3 AND C02 1 3 4 9  

Process  Measurements 

Temperatures a t  v a r i o u s  p o i n t s  i n  the  process  were monitored 

with iron-cons t a n t i n  thermocouples i n  s t a i n l e s s  s tee1 shea ths  

re ferenced  t o  an  ice  b a t h .  

h e a t e r  H w a s  measured and c o n t r o l l e d  by manually a d j u s t i n g  t h e  

s h e l l - s i d e  steam p r e s s u r e  and thermocouples were i n s e r t e d  15 cm 

above and below t h e  bottom and top ,  r e s p e c t i v e l y ,  of both packed 

columns. 

The feed  temperature  l e a v i n g  t h e  pre-  

Liquid  flow rates  to  and from t h e  s t r i p p e r  w e r e  measured with 

metric-series ro tameters  and t h e  vapor flow l e a v i n g  the column w a s  

monitored with an o r i f i c e  meter s i t u a t e d  between the  pressure  l e t -  

down v a l v e  and the  reabsorber .  

Samples of  t h e  feed  stream t o  t h e  s t i p p e r  and of  t h e  l i q u i d  

stream l e a v i n g  t h e  packing suppor t  p l a t e  w e r e  analyzed f o r  C 0 2  and 

NH by p o t e n t i o m e t r i c  t i t r a t i o n  a f t e r  a d d i t i o n  of barium c h l o r i d e  

t o  the  sample t o  f i r s t  p r e c i p i t a t e  the  carbon d i o x i d e .  Two 

i n f l e c t i o n  p o i n t s  i n  the  pH curve were found a t  pH 7-8 (ammonia) 

and pH 3-5 (carbon d i o x i d e ) .  Vapor samples were not  taken s o  no 

check w a s  made f o r  c l o s u r e  of a mass balance ;  however, p rev ious  

work ( 1 7 )  wi th  t h e  CO -monoethanolamine system s u g g e s t s  t h a t  

c l o s u r e  to  w i t h i n  +22% can be expected on average.  

flow rates and composi t ions are to  be used as i n p u t  d a t a  t o  t h e  

process  model, w e  a n t i c i p a t e  t h a t  the  p r e d i c t e d  column h e i g h t  

requi red  to  perform t h e  measured t a s k  w i l l  b e  i n  no b e t t e r  agree-  

ment wi th  t h e  a c t u a l  h e i g h t  than  t h e  e x t e n t  t o  which a m a s s  

balance c l o s e s .  

3 

2 
Since measured 

RESULTS AND DISCUSSION 

Rather than provid ing  an e x t e n s i v e  se t  of  measured column 

performance d a t a  which, i n  any case ,  would b e  l i m i t e d  t o  Raschig 

r i n g s  of commercially unimportant s i z e  (%-in . ) ,  the  purpose of 

the  experiments was to  provide conf i rmat ion  (or  o therwise)  of t h e  

model. Resul t s  of the  r a t h e r  l i m i t e d  number of experiments  

conducted are given i n  Table 1 from which i t  can be seen  t h a t  
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1350 WEILAND AND LITSTER 

TABLE 1 

Summary o f  Exper imen ta l  R e s u l t s  

To P Feed Bottoms 
Feed Vapor Composition Composi t i o n  __- 

F.xneriment P r e s s u r e  Rate Rate  w/w% w l w x  ppm 

1 2 .13  3.78 0.40 

& 2 .13  2 .34 0.29 

3 2 .13  3.11 0.29 

4 2 .13  2.29 0 .29  

> 3.25 2.34 0 . 2 9  

0 2.90 2.34 0.36 

) 

NH3 

1 .89  

1.44 

1 . 4 6  

1 . 4 2  

1 .49  

1 . 3 7  

c02 NH3 

0.79 930 

0.24 100 

0.38 640 

0 .91  110 

0.39 200 

0 .83  55 

PPm 
GO2 

27 

20 

130 

20 

30 

6 

,immoni.3 ind ca rbon  d i o x i d e  c o n c e n t r a t i o n s  as low as 55 ppm and 6 

ppm, r e s p e c t i v e l y ,  were a c h i e v e d .  An overhead  vapor  c o n t a i n i n g  

rip t o  20 w / w  2 ammonia was produced.  It  is  a l s o  i n t e r e s t i n g  t o  

[ tote  t h a c  CO c a n  b e  s t r i p p e d  much more e a s i l y  t h a n  ammonia. 

System p a r a m e t e r s  such  a s  p r e s s u r e  w e r e  n o t  v a r i e d  i n  such  ri way 

<is t o  show the  e f f e c t  o f  one v a r i a b l e  a t  a t i m e ;  hence ,  i t  i s  n o t  

p o s s i b l e  f rom t h e s e  r a t h e r  s p a r s e  d a t a  to comment on t h e  r e s p o n s e  

o f  t h e  sys t em t o  a change i n  o n l y  one o p e r a t i n g  c o n d i t i o n .  

Iiowever, t h e s e  d a t a  do p r o v i d e  a r e a s o n a b l e  b a s i s  f o r  comparison 

wi th  model p r e d i c t i o n s .  

2 

‘Rie fund,tmental model o u t l i n e d  ear l ie r  w a s  programmed i n  

i o r t r , * n  f o r  t h e  p r e d i c t i o n  of column h e i g h t  r e q u i r e d  t o  produce 

-1 s p e (  L f i e d  l e a n  bo t toms  c o m p o s i t i o n  from a g i v e n  f e e d  c o n c e n t r a -  

t i o n  .ind ra te  when t h e  column o p e r a t i n g  p r e s s u r e  and overhead 

vapor r a t e  (dLrec t1y  r e l a t e d  t o  t h e  b o i l u p  r a t e )  a r e  s t i p u l a t e d .  

Flass .irid ene rgy  b a l a n c e s  are de te rmined  f o r  each  s e c t i o n  and t h e  

d l c u l d t i o n s  proceed s e q u e n t i a l l y  f rom s e c t i o n  t o  s e c t i o n .  Wi th in  

m y  sc ( t i o n  m a s  t r a n s f e r  rates a r e  e s t a b l i s h e d  by i t e r a t i v e  

c a l c u l d t i o n .  A comparison between t h e  p r e d i c t e d  and e x p e r i m e n t a l  

I ulumia h e i g h t  r e q u i r e d  t o  pe r fo rm the s e p a r a t i o n s  i n d i c a t e d  I n  

l a b l e  1s prclsented i n  Table  2.  The e x p e r i m e n t a l  packed h e i g h t  
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Predic ted  Column Height  

Experiment Height (m) 

1 1.51 

2 1 . 4 8  

3 

4 1 . 7  3 

6 1 .30 

5 1 . 2 5  

Mean = 1.5  m, u = +0.2  m 2 3 

w a s  1.64 m; the  p r e d i c t e d  h e i g h t  f o r  these  s i x  experiments  w a s  

1 .52  m wi th  a s t a n d a r d  d e v i a t i o n  of 20.23 m o r  15%. 

A similar  model has  been analyzed by Hegner and Molzahn (18) 

who se t  up the  problem i n  terms o f  a block t r i d i a g o n a l  m a t r i x  

formulat ion r a t h e r  than  the  s e q u e n t i a l  sec t ion- to-sec t ion  pro- 

cedure descr ibed  h e r e .  These formula t ions  a r e  e n t i r e l y  d i f f e r e n t  

s i n c e  t h e  m a t r i x  approach r e q u i r e s  t h a t  t h e  h e i g h t  of the  column 

be a known q u a n t i t y ;  whereas, s e q u e n t i a l  methods c a l c u l a t e  i t  as  

p a r t  of the  s o l u t i o n  procedure. Never the less ,  m a t r i x  methods 

form a corners tone  i n  t h e  a n a l y s i s  of s t a g e d  o p e r a t i o n s .  

I n  the  p r e s e n t  c a s e ,  f o r  which flows and compositions can b e  

completely s p e c i f i e d  f o r  t h e  feed  and c l o s e l y  e s t i m a t e d  f o r  t h e  

overhead vapor ,  sec t ion- to-sec t ion  methods are recommended over  

block t r i d i a g o n a l  m a t r i x  formula t ions  ( 1 9 ) .  Matr ix  methods w e r e  

o r i g i n a l l y  developed t o  overcome convergence d i f f i c u l t i e s  

experienced wi th  t h e  s e q u e n t i a l  procedures  i n  c e r t a i n  types of  

problems involv ing  e q u i l i b r i u m  s t a g e  c a l c u l a t i o n s .  The extens ion  

to  cont inuous c o n t a c t i n g  equipment by Hegner and Molzahn (18) i s  

a commendable c o n t r i b u t i o n ,  t h a t  needs to  be explored i n  much 

g r e a t e r  depth ,  n o t  only f o r  cont inuous c o n t a c t i n g  equipment, b u t  

a l s o  f o r  nonequi l ibr ium s t a g e  o p e r a t i o n s  i n  which each component 

may have a d i f f e r e n t  composition-dependent s t a g e  e f f i c i e n c y .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1352 WEITAND AND LITSTER 

These au thors  compared t h e i r  c a l c u l a t i o n s  wi th  exper imenta l ly  

dctermjned vapor-phase C02 and NH 
CO predominated a t  t h e  base of t h e  column, be ing  a t  very low 

c o n c e n t r a t i o n s  near  t h e  top where ammonia w a s  t h e  dominant 

component. OUK f i n d i n g s  are c o n t r a d i c t o r y  i n  t h a t  we observed 

both CO and ammonia t o  be  i n  exceedingly low c o n c e n t r a t i o n  a t  t h e  

bottom of  the  Icolumn. However, our  experiments  were c a r r i e d  o u t  

a t  p r e s s u r e s  up t o  33 p s i g  and temperatures  up t o  n e a r l y  140°C 

whereas those of  Hegner and Molzahn were done a t  0 p s i g  and a 

correspondingly lower temperature .  Thus, r a t h e r  unfavorable  r a t e s  

of carbamate decomposition could b e  expected i n  t h e i r  work. 

mole f r a c t i o n s  and found t h a t  3 

2 

2 

I n  summary, a s e c t i o n - t o - s e c t i o n  procedure has been proposed 

f o r  the  des ign  and a n a l y s i s  o f  packed columns f o r  t h e  recovery o f  

ammonia and carbon d ioxide  from a was te  water stream. Model 

p r e d i c t i o n s  have been v a l i d a t e d  by comparison w i t h  s e v e r a l  p i l o t  

s c a l e  experiments .  It  i s  a l s o  of  i n t e r e s t  t o  n o t e  t h a t  by having 

a fundamental (or mechanis t ic  model a v a i l a b l e ,  one i s  i n  a p o s i t i o n  

t o  op t imize  column d e s i g n ,  t o  enable  o p e r a t i o n  a t  minimum energy 

consumption rates, f o r  example. 
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NOTATION 

2 3  

3 
3 i n t e r f a c i a l  area (m / m  ) 

c c o n c e n t r a t i o n  (kgmol/m ) 

i) d i f f u s i o n  c o e f f i c i e n t  (mL/s) 

(: vapor  r a t e  (kg/m s )  

11 Henry's l a w  c o n s t a n t  

Ha Hatta number 

:,HR h e a t  of  r e a c t i o n  (kcal /gmole)  o r  (J/kgmol) 

AH, h e a t  of s o l u t i o n  ( J / k g m l e )  
3 kR r e a c t i o n  rate c o n s t a n t  (cm /gmol-s) 
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k:a 

ky" 
L 

N 

P 

R 

S 

T 

X 

Y 
A 2  

l i q u i d - f i l m  c o e f f i c i e n t  wi thout  r e a c t i o n  (kgmol/m' s)  

gas-f i lm c o e f f i c i e n t  (kgmol/m3-s) 
2 

l i q u i d  ra te  (kg/m -9 )  

molar mass t r a n s f e r  rate (kgmol/s) 

system p r e s s u r e  (atmospheres) 

molar f l u x  (kgmol/m s )  

steam condensat ion ra te  (kgmol/s) 

a b s o l u t e  temperature  (K) 

mole f r a c t i o n  i n  l i q u i d  phase 

mole f r a c t i o n  i n  gas phase 

h e i g h t  o f  a s e c t i o n  (m) 

2 

Greek L e t t e r s  

AS 

Fi v i s c o s i t y  (kg/m*s) 

P d e n s i t y  (kg/m ) 

4 enhancement f a c t o r  

l a t e n t  h e a t  of condensat ion of steam (Jlkgmol) 

3 

S u p e r s c r i p t s  

* e q u i l i b r i u m  

- aver  age 

Subscr ip ts  

i component 

j s e c t i o n  

P carbamate 
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